Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra.

Identifieur interne : 001336 ( Main/Exploration ); précédent : 001335; suivant : 001337

Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra.

Auteurs : Josef Urban [République tchèque, Russie] ; Miles W. Ingwers [États-Unis] ; Mary Anne Mcguire [États-Unis] ; Robert O. Teskey [États-Unis]

Source :

RBID : pubmed:28338959

Descripteurs français

English descriptors

Abstract

The effect of temperature on stomatal conductance (gs) and corresponding gas exchange parameters was studied in two tree species with contrasting leaf anatomy and ecophysiology-a broadleaf angiosperm, Populus deltoides x nigra (poplar), and a needle-leaf gymnosperm, Pinus taeda (loblolly pine). Experiments were conducted in growth chambers across a leaf temperature range of 19-48°C. Manipulations of temperature were done in well-watered and drought soil conditions and under ambient (400 ppm) and elevated (800 ppm) air CO2 concentrations. Increases in leaf temperature caused stomatal opening at both ambient and elevated [CO2]. The gs increased by 42% in poplar and by 40% in loblolly pine when leaf temperature increased from 30°C to 40°C at a vapour pressure difference of 1 kPa. Stomatal limitation to photosynthesis decreased in elevated temperature in loblolly pine but not in poplar. The ratio of net photosynthesis to gs depended on leaf temperature, especially at high temperatures. Evaporative cooling of transpiring leaves resulted in reductions in leaf temperature up to 9°C in well-watered poplar but only 1°C in drought-stressed poplar and in loblolly pine. As global mean temperatures rise and temperature extremes become more frequent and severe, understanding the effect of temperature on gs, and modelling that relationship, will become increasingly important.

DOI: 10.1093/jxb/erx052
PubMed: 28338959
PubMed Central: PMC5444456


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra.</title>
<author>
<name sortKey="Urban, Josef" sort="Urban, Josef" uniqKey="Urban J" first="Josef" last="Urban">Josef Urban</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Forest Botany, Dendrology and Geobiocenology, Mendel University in Brno, Brno, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Forest Botany, Dendrology and Geobiocenology, Mendel University in Brno, Brno</wicri:regionArea>
<placeName>
<settlement type="city">Brno</settlement>
<region>Moravie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Siberian Federal University, Krasnoyarsk, Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Siberian Federal University, Krasnoyarsk</wicri:regionArea>
<wicri:noRegion>Krasnoyarsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ingwers, Miles W" sort="Ingwers, Miles W" uniqKey="Ingwers M" first="Miles W" last="Ingwers">Miles W. Ingwers</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcguire, Mary Anne" sort="Mcguire, Mary Anne" uniqKey="Mcguire M" first="Mary Anne" last="Mcguire">Mary Anne Mcguire</name>
<affiliation wicri:level="2">
<nlm:affiliation>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Teskey, Robert O" sort="Teskey, Robert O" uniqKey="Teskey R" first="Robert O" last="Teskey">Robert O. Teskey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28338959</idno>
<idno type="pmid">28338959</idno>
<idno type="doi">10.1093/jxb/erx052</idno>
<idno type="pmc">PMC5444456</idno>
<idno type="wicri:Area/Main/Corpus">001393</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001393</idno>
<idno type="wicri:Area/Main/Curation">001393</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001393</idno>
<idno type="wicri:Area/Main/Exploration">001393</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra.</title>
<author>
<name sortKey="Urban, Josef" sort="Urban, Josef" uniqKey="Urban J" first="Josef" last="Urban">Josef Urban</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Forest Botany, Dendrology and Geobiocenology, Mendel University in Brno, Brno, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Department of Forest Botany, Dendrology and Geobiocenology, Mendel University in Brno, Brno</wicri:regionArea>
<placeName>
<settlement type="city">Brno</settlement>
<region>Moravie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Siberian Federal University, Krasnoyarsk, Russia.</nlm:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Siberian Federal University, Krasnoyarsk</wicri:regionArea>
<wicri:noRegion>Krasnoyarsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ingwers, Miles W" sort="Ingwers, Miles W" uniqKey="Ingwers M" first="Miles W" last="Ingwers">Miles W. Ingwers</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcguire, Mary Anne" sort="Mcguire, Mary Anne" uniqKey="Mcguire M" first="Mary Anne" last="Mcguire">Mary Anne Mcguire</name>
<affiliation wicri:level="2">
<nlm:affiliation>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Teskey, Robert O" sort="Teskey, Robert O" uniqKey="Teskey R" first="Robert O" last="Teskey">Robert O. Teskey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Hot Temperature (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Pinus taeda (physiology)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Stomata (physiology)</term>
<term>Plant Transpiration (MeSH)</term>
<term>Populus (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Feuilles de plante (physiologie)</term>
<term>Photosynthèse (MeSH)</term>
<term>Pinus taeda (physiologie)</term>
<term>Populus (physiologie)</term>
<term>Stomates de plante (physiologie)</term>
<term>Sécheresses (MeSH)</term>
<term>Température élevée (MeSH)</term>
<term>Transpiration des plantes (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Pinus taeda</term>
<term>Populus</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Pinus taeda</term>
<term>Plant Leaves</term>
<term>Plant Stomata</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Hot Temperature</term>
<term>Photosynthesis</term>
<term>Plant Transpiration</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Photosynthèse</term>
<term>Sécheresses</term>
<term>Température élevée</term>
<term>Transpiration des plantes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of temperature on stomatal conductance (gs) and corresponding gas exchange parameters was studied in two tree species with contrasting leaf anatomy and ecophysiology-a broadleaf angiosperm, Populus deltoides x nigra (poplar), and a needle-leaf gymnosperm, Pinus taeda (loblolly pine). Experiments were conducted in growth chambers across a leaf temperature range of 19-48°C. Manipulations of temperature were done in well-watered and drought soil conditions and under ambient (400 ppm) and elevated (800 ppm) air CO2 concentrations. Increases in leaf temperature caused stomatal opening at both ambient and elevated [CO2]. The gs increased by 42% in poplar and by 40% in loblolly pine when leaf temperature increased from 30°C to 40°C at a vapour pressure difference of 1 kPa. Stomatal limitation to photosynthesis decreased in elevated temperature in loblolly pine but not in poplar. The ratio of net photosynthesis to gs depended on leaf temperature, especially at high temperatures. Evaporative cooling of transpiring leaves resulted in reductions in leaf temperature up to 9°C in well-watered poplar but only 1°C in drought-stressed poplar and in loblolly pine. As global mean temperatures rise and temperature extremes become more frequent and severe, understanding the effect of temperature on gs, and modelling that relationship, will become increasingly important.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28338959</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>68</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2017</Year>
<Month>03</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra.</ArticleTitle>
<Pagination>
<MedlinePgn>1757-1767</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erx052</ELocationID>
<Abstract>
<AbstractText>The effect of temperature on stomatal conductance (gs) and corresponding gas exchange parameters was studied in two tree species with contrasting leaf anatomy and ecophysiology-a broadleaf angiosperm, Populus deltoides x nigra (poplar), and a needle-leaf gymnosperm, Pinus taeda (loblolly pine). Experiments were conducted in growth chambers across a leaf temperature range of 19-48°C. Manipulations of temperature were done in well-watered and drought soil conditions and under ambient (400 ppm) and elevated (800 ppm) air CO2 concentrations. Increases in leaf temperature caused stomatal opening at both ambient and elevated [CO2]. The gs increased by 42% in poplar and by 40% in loblolly pine when leaf temperature increased from 30°C to 40°C at a vapour pressure difference of 1 kPa. Stomatal limitation to photosynthesis decreased in elevated temperature in loblolly pine but not in poplar. The ratio of net photosynthesis to gs depended on leaf temperature, especially at high temperatures. Evaporative cooling of transpiring leaves resulted in reductions in leaf temperature up to 9°C in well-watered poplar but only 1°C in drought-stressed poplar and in loblolly pine. As global mean temperatures rise and temperature extremes become more frequent and severe, understanding the effect of temperature on gs, and modelling that relationship, will become increasingly important.</AbstractText>
<CopyrightInformation>© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Urban</LastName>
<ForeName>Josef</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Botany, Dendrology and Geobiocenology, Mendel University in Brno, Brno, Czech Republic.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Siberian Federal University, Krasnoyarsk, Russia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ingwers</LastName>
<ForeName>Miles W</ForeName>
<Initials>MW</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McGuire</LastName>
<ForeName>Mary Anne</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Teskey</LastName>
<ForeName>Robert O</ForeName>
<Initials>RO</Initials>
<AffiliationInfo>
<Affiliation>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="Y">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D041603" MajorTopicYN="N">Pinus taeda</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="Y">Plant Transpiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Ball–Berry model</Keyword>
<Keyword MajorTopicYN="Y">elevated temperature</Keyword>
<Keyword MajorTopicYN="Y">evaporative cooling</Keyword>
<Keyword MajorTopicYN="Y">global change</Keyword>
<Keyword MajorTopicYN="Y">heat waves</Keyword>
<Keyword MajorTopicYN="Y">stomatal conductance.</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28338959</ArticleId>
<ArticleId IdType="pii">3062261</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erx052</ArticleId>
<ArticleId IdType="pmc">PMC5444456</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2013 Oct 17;4:409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24146668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Nov;53(378):2249-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12379792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Apr;38(4):629-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25224884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Oct;196(2):448-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22897414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 29;491(7426):752-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 Nov;21(11):4221-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26111255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Jul;84(3):658-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Aug 13;305(5686):994-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15310900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Jul;51(348):1255-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10937701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1995 Jun;15(6):351-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14965943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2000 Apr;20(7):435-445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 22;437(7058):529-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16177786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Sep;193-194:70-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22794920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Jul;33(7):1084-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Aug 21;424(6951):901-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12931178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2014 Apr 11;6:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24876300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Sep;38(9):1699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25065257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1986 Dec;2(1_2_3):131-142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14975848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Apr;202(2):499-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24392838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7222-E7230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):E2415-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22869707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1974 Jun;17 (2):159-170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28309023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2012;63:1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22242962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 May;36(5):936-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23072325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2017 Jun;40(6):872-880</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27531223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Apr;8(4):391-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16518390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 May 22;22(10):R396-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22625853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Nov;54(392):2393-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14512377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Aug;27(8):1083-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17472935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Oct;212(1):80-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27189787</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Russie</li>
<li>République tchèque</li>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
<li>Moravie</li>
</region>
<settlement>
<li>Brno</li>
</settlement>
</list>
<tree>
<country name="République tchèque">
<region name="Moravie">
<name sortKey="Urban, Josef" sort="Urban, Josef" uniqKey="Urban J" first="Josef" last="Urban">Josef Urban</name>
</region>
</country>
<country name="Russie">
<noRegion>
<name sortKey="Urban, Josef" sort="Urban, Josef" uniqKey="Urban J" first="Josef" last="Urban">Josef Urban</name>
</noRegion>
</country>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Ingwers, Miles W" sort="Ingwers, Miles W" uniqKey="Ingwers M" first="Miles W" last="Ingwers">Miles W. Ingwers</name>
</region>
<name sortKey="Mcguire, Mary Anne" sort="Mcguire, Mary Anne" uniqKey="Mcguire M" first="Mary Anne" last="Mcguire">Mary Anne Mcguire</name>
<name sortKey="Teskey, Robert O" sort="Teskey, Robert O" uniqKey="Teskey R" first="Robert O" last="Teskey">Robert O. Teskey</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001336 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001336 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28338959
   |texte=   Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28338959" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020